DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

author

  • Fouzia Boutaouche laboraoire SIMPA, Departement d'informatique, Faculte des mathematiques et d'informatique, Universite des sciences et de la technologie d'Oran "Mohamed BOUDIAF", USTO-MB; BP 1505 El M'naouer 31000, Oran, Algerie
Abstract:

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and interpretation for breast cancer. In the proposed approach, a Local Chan-Vese (LCV) model is used for the mass lesion segmentation step to isolate a suspected abnormality in a mammogram. In the classification step, we propose a two-step process: firstly, we use the hierarchical fuzzy partitioning (HFP) to construct fuzzy partitions from data, instead of using the only human information, available from expert knowledge, which are not sufficiently accurate and confronted to errors or inconsistencies. Secondly,fuzzy decision tree induction are proposed to extract classification knowledge from a set of  feature-based examples. Fuzzy decision trees are first used to determine the class of the abnormality detected (well-defined mass, ill-defined mass, architectural distortion, or speculated masses), then, to identify the Severity of the abnormality, which can be benign or malignant. The proposed system is tested by using the images from Mammographic Image Analysis Society[MIAS] database. Experimental results show the efficiency of the proposed approach, resulting in an accuracy rate of 87, a sensitivity of 82.14%, and good specificity of 91.42

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Fuzzy Decision Tree Induction Approach for Mining Fuzzy Association Rules

Decision Tree Induction (DTI), one of the Data Mining classification methods, is used in this research for predictive problem solving in analyzing patient medical track records. In this paper, we extend the concept of DTI dealing with meaningful fuzzy labels in order to express human knowledge for mining fuzzy association rules. Meaningful fuzzy labels (using fuzzy sets) can be defined for each...

full text

Look-ahead based fuzzy decision tree induction

Decision tree induction is typically based on a top-down greedy algorithm that makes locally optimal decisions at each node. Due to the greedy and local nature of the decisions made at each node, there is considerable possibility of instances at the node being split along branches such that instances along some or all of the branches require a large number of additional nodes for classification...

full text

A local region-based Chan-Vese model for image segmentation

In this paper, a new region-based active contour model, namely local region-based Chan–Vese (LRCV) model, is proposed for image segmentation. By considering the image local characteristics, the proposed model can effectively and efficiently segment images with intensity inhomogeneity. To reduce the dependency on manual initialization in many active contour models and for an automatic segmentati...

full text

An efficient local Chan-Vese model for image segmentation

Article history: Received 28 September 2008 Received in revised form 14 May 2009 Accepted 2 August 2009

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 6

pages  15- 40

publication date 2017-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023